-
[079] "Butanol recovery from a synthetic fermentation broth by vacuum distillation in rotating packed bed for improving the water reuse"
Karol DudekDone
-
[091] Voltamperometric characterization of the reduction of dissolved oxygen to hydrogen peroxide
Danay Alexandra CharlesDone
-
[038] Efecto antiincrustante en membranas de nanocompositos de nanotubos de carbono con poliamida para desalinización de agua a escala industrial
Aaron Morelos GomezDone
-
[112] EFFECT OF ZIRCONIUM ON THE REMOVAL OF FLUORIDE BY ZR-HYDROTALCITE AND THEIR CALCINATION PRODUCTS
Gloribel VázquezDone
-
[143] Efecto de iones presentes en aguas subterráneas sobre la remoción de arsénico en condiciones sulfato reductoras.
Ana Laura Salinas TorresDone
-
[059] Comparación del tratamiento de agua residual doméstica y vinazas tequileras mediante sistemas de Lodos Activados y Reactor de Biopelícula de Lecho Móvil (MBBR)
Alejandra Beltrán PlascenciaDone
-
[119]Evaluación de la decoloración de azul de metileno y anaranjado de metilo en agua mediante fotocatálisis solar con TiO2 y TiO2/SiO2
Ana Victoria Rugerio SuárezDone
-
[127] DISEÑO Y EVALUACIÓN DE UN CATALIZADOR HÍBRIDO QUÍMICO BIOCATALÍTICO EN EL TRATAMIENTO DE CIPROFLOXACINO EN AGUA
Fernando Pacheco TorresDone
-
[032] Local wastewater treatment systems – a solution for Motor Rest Areas sewage purification?
Kinga MarekDone
-
[138] "VALORISATION OF WASTEWATER FROM TILAPIA AQUACULTURE BY CO-DIGESTION WITH FOOD WASTE THROUGH BIOCHEMICAL HYDROGEN PRODUCTION"
Manuel Canto-RobertosDone
Pollution has been increasingly affecting soil, air, and water. Nitrogen compounds and antibiotics belonging to the group of emerging organic compounds (EOCs) have been detected as one of the contaminants most frequently present in water. The denitrifying process is an alternative to remove simultaneously nitrogenous (NO3-) and carbonaceous matter. The objective of this work was to evaluate in batch assays the ability of a stabilized denitrifying sludge without prior exposure to antibiotics to eliminate and mineralize tetracycline (TET) and ciprofloxacin (CIP) as the only source of electrons. Consumption efficiencies (E, %), products yield (Y, mg C or N produced/mg C or N consumed), and specific consumption (qTET, qCIP, and qNO3) and production (qHCO3, qN2) rates (q, mg C or N/ g SSV h) were used as response variables for evaluating denitrification with 20 mg antibiotic-C/l. Within 24 h of culture, total elimination of CIP (E = 100%) and partial elimination of TET (E = 69%) were achieved. Antibiotic losses due to adsorption and chemical reaction were not significant. Both antibiotics were completely mineralized to HCO3- whereas NO3- was completely reduced to N2 (YHCO3 and YN2 close to 1). The denitrifying process using TET was slower than that using CIP, as qTET, qHCO3, and qN2 values were 57-73% lower than those obtained in the assays with CIP. Denitrifying sludge showed the ability for using both antibiotics as the only source of electrons to perform the denitrifying process without the accumulation of carbonated or nitrogenous intermediates.
https://zoom.us/j/99261302467?pwd=TTBVbTUxaUdHSzNuQlFuOVF2NDVZUT09